Deep Learning for Data Science
DS 542 [m]z7wedy

Lecture 22 '- .
Normalizing Flows — =fgfadly

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Last Time

Unsupervised Learning

Taxonomy
Generative models
Quantifying performance

o
([
o
e Variational autoencoders

This Time

Generative Models

e Normalizing Flows
o Key design change is invertibility of each layer
o Enables efficient probability computations

Do we have good models?

GANs | VAEs | Flows | Diffusion
Efficient sampling v v v X
High quality v X X v
Coverage X s ? 7
Well-behaved latent space v v v X
Interpretable latent space ¢ ? 7 X
Efficient likelihood n/a X v X

Didn’t Variational Autoencoders have Sample
Probabilities?

Yes, but can you solve this efficiently?

Pr(x;|¢) = [Normxi [f[z, R 0'21]] Norm,[0, I]dz

This can be approximated by sampling z but slow...

Latent variable models

Normal Latent Model Model output Real world output
distribution variables [110]
109
[_n &7 110
0.5 108
0! 109
> |12 - — |10
~0.6
‘ 110
Deep learning 110
i) model 109

Latent variable models map a random “latent” variable to create a new data
sample

Latent Variable Models

Informally speaking, different levels of latent variables...
o Latent variable directly determines observations
o e.g.x=f(z)
o Latent variable determines distribution of observations
o eg x & Norm[f,(2),f,2(2)]
e These levels aren’t really different -

o An extremely tight distribution ~ a fixed prediction

o Afixed prediction + noise ~ a distribution

Normalizing Flows

e Will start from a latent variable with a known distribution.

e Will map directly from latent variable to sample value.
o x=1(z)

e Key change: f will be invertible.
o This also means that z and x have the same dimension.

One Dimension - Mapping from Latent to Sample

a)
0.5

Base density b) Model density

~~
N
N—"
&~
A, -

0.0

3.0

Pr(:v)

0.0

3.0

-3.0-

2 30 30 000

Figure 16.1 Transforming probability distributions. a) The base density is a
standard normal defined on a latent variable z. b) This variable is transformed
by a function z = f[z, ¢] to a new variable z, which c¢) has a new distribution. To
sample from this model, we draw values z from the base density (green and brown
arrows in panel (a) show two examples). We pass these through the function f|z, ¢|
as shown by dotted arrows in panel (b) to generate the values of x, which are
indicated as arrows in panel (c).

" 3.0

One Dimension - Mapping from Latent to Sample

z = flz, ¢

Model density
x

0.0

0.5
-3.0

z 3.0
Base density

Figure 16.2 Transforming distributions. The base density (cyan, bottom) passes
through a function (blue curve, top right) to create the model density (orange,
left). Consider dividing the base density into equal intervals (gray vertical lines).
The probability mass between adjacent lines must remain the same after transfor-
mation. The cyan-shaded region passes through a part of the function where the
gradient is larger than one, so this region is stretched. Consequently, the height
of the orange-shaded region must be lower so that it retains the same area as the
cyan-shaded region. In other places (e.g., z = —2), the gradient is less than one,
and the model density increases relative to the base density.

One Dimension - Easy Mode

Easier trick (not in the book)

e Use cumulative distribution functions!

x = cdf, " '(cdf (2))

e This is similar to the sampling method

x = cdf, "' (Uniform(0,1))

One Dimension - Inverting

a)

0.5
&
=
R

0.0

Model density b) Base density

3.0

3.0

-3.0

e 30

Figure 16.3 Inverse mapping (normalizing direction). If the function is invertible,
then it’s possible to transtform the model density back to the original base density.
The probability of a point z under the model density depends partly on the
probability of the equivalent point z under the base density (see equation 16.1).

3.0

One Dimension - Inverting Easy Mode

If still one dimensional

x = cdf, '(cdf (2))

Then invert to get

z = cdf, ' (cdf, (x))

One Dimension - Mapping Probabilities

Simple formula for sample probability density in terms of latent probability density
and derivative of mapping.

1
of|z,
Pr(x| @) = [;Z¢] - Pr(z)

e If mapping changes quickly, probability is spread out more.
e If mapping changes slowly, probability is more concentrated.

One Dimension - Mapping Probabilities

aO)S Base density Model density
£
&~
A |
0.0+==— ‘ — ‘ : '
-3.0 2 3.0 B

Requirement for Computing Sample Probability

We need to know Z!

So f must be invertible.
Easy to handle in 1D.

o Justuse cdf’s...
Will be harder with more dimensions.

Pr(x|¢) =

of[z, @]

07

Aside: Terminology
e The forward mapping x = f[z, ¢] is often called the generative direction.
e The inverse mapping z = f~![x, ¢] s often called the normalizing direction

since it maps the complicated X distribution to the relatively simple z
distribution... which we usually pick to be normal.

Why Normal Latents?

Why do we keep using normal distributions for latent variables?

They are defined everywhere, so any value works.

So they have gradients everywhere.

But those gradients induce a bias towards more central latent values.
And outliers are obvious.

e \ariational autoencoders used these properties explicitly a couple times.
e Similar benefits here.

General Case (more than one dimension)

Still using x = f[z, ¢] but now using deep neural networks.

oz, ¢]
0z

-1
Sample probabilities are Pr(x|¢) = ‘ ‘ - Pr(z)

e “Same formulas” but with bold for vector notation instead of scalars.

e In the sample probability formula,
o Partial derivatives are the Jacobian matrix.
o And the magnitude is the determinant of that Jacobian matrix.

Why Determinant?

e When | learned linear algebra,

o det(A) = sum over column permutations of the product of the diagonal plus a power of -1...
o Thatis pretty irrelevant now.

e More relevant identity
o det(A) = product of eigenvalues

Determinants and relative density changes...

Eigenvectors form an orthonormal basis.

Looking at eigenvectors of the gradients, so they span the sample space.
So the eigenvalues tell us about relative rates of gradient change.

And the determinant tells about relative volume rates

between latent and sample space...

Forward and Inverse Mappings

Inverse mapping

. fl_l[.ad)l] f2_1[.7¢2] fgl[.7¢3] .
Base density Model density

f1 [.?(:bl] f2[.=¢2] f3[.’¢3]

Forward mapping

Figure 16.4 Forward and inverse mappings for a deep ncural network. The base
density (left) is gradually transformed by the network layers fi[e, ¢,], f2[e, 5], . ..
to create the model density. FEach layer is invertible, and we can equivalently
think of the inverse of the layers as gradually transforming (or “flowing”) the

model density back to the base density.

General Case

Unwinding the layers of the neural network,

x =flz, ¢] = £y [fK_l [...f2 I£.(2, ¢, &), ...¢K_1] : qbK]

Z = f—l[xa ¢] — fl_l [f; [f[_(l_l [f[_(l[x’ ¢K]9 ¢K—1]’ ¢2] ’ ¢1]

Again, the usual choice for Pr(z) is a normal distribution, leading to the name
“normalizing flows” for this inverting process.

General Case - Jacobian

The Jacobian can similarly be computed from individual layer Jacobians...

oz, @] _ oMgllx_1, Pxl Mg llg 2. px1] OhlEy, ho] [z, @]

oz OfK_ 1 of K= afl o0z

If any of them is zero, then the whole Jacobian is zero.

Also the case for invertibility.

Layer Wish List

e Expressiveness - can they combine to express an arbitrary density mapping?
e Invertibility - otherwise, not normalizing flows.

e Efficiency
o Inverting each layer should be efficient.
o Computing the determinant of the Jacobian should also be efficient (either direction works).

Invertible Network Layers

Two easy choices for invertible network layers or “flows”

e Linear flows
e Elementwise flows

Both are easy to invert, but not expressive enough.

e Will use these as building blocks.

Normalizing Flows - Linear Flows

Really just a linear layer without an activation function.

f(h] = + Qh

Cost of inverting grows with cube of dimension, so may parameterize it as an LU
decomposition to make inversion cheaper.

Q = PL(U + D)

Linear functions applied to multivariate normal distributions give more multivariate
normal distributions.

Elementwise Flows

Idea: Apply an invertible nonlinear function to each element.

fh] = [fThy, @1, fThys Pl ... fThps $1]

e (Can use different functions for each element.
e Limitation is that different dimensions do not interact.

Elementwise Flows

a) o5 b) 1o

b5

1 I v

5 0.0
Parameters, ¢

flh, @]

Output, A’/

' ' 1.0
Input, h

Figure 16.5 piecewise linear mapping. An invertible piecewise linear mapping h’ =
f[h, @] can be created by dividing the input domain h € [0, 1] into K equally sized
regions (here K = 5). Each region has a slope with parameter, ¢,. a) If these

parameters are positive and sum to one, then b) the function will be invertible
and map to the output domain A’ € [0, 1].

Coupling Flows

a) __ Forward mapping b) __ Inverse mapping
hy h’ hyf h}
¢lhy] ¢lhy]
Y Y
hot—{ g[hs, ¢[hi]| |—h5 hol—{ g 1}, o[hy][— b5
Input Output Input Output

Figure 16.6 Coupling flows. a) The input (orange vector) is divided into hy
and hy. The first part h] of the output (cyan vector) is a copy of hi. The
output hj is created by applying an invertible transformation gfe, ¢] to ha, where
the parameters ¢ arc themselves a (not necessarily invertible) function of h;. b)
In the inverse mapping, h; = h}. This allows us to calculate the parameters ¢[h]
and then apply the inverse g~ '[h%, @] to retrieve hs.

Coupling Flows

e Half of vector is just copied.
e Other half can change.

e Use fixed permutation matrices to vary which can change each layer.
o Permutation matrices tend to be hard to learn.

Autoregressive Flows

a) Forward mapping b) Inverse mapping
M) M) SR R
g[m. o> | g [hg]
hq 1Ay hi R
|| L .
g|h2, @[hi] 1|
ha |]) hy
g[h3,¢[h1:2]] , 3
h3 ha) hg
hy haj< &7 [@l K,
4 xi)‘ —J {i/‘
Input Output Input Output

Figure 16.7 Autoregressive flows. The input h (orange column) and output h’
(cyan column) are split into their constituent dimensions (here four dimensions).
a) Output h} is an invertible transformation of input hi. Output h5 is an in-
vertible function of input ho where the parameters depend on hi. Output hj
is an invertible function of input hs where the parameters depend on previous
inputs hi1 and ha, and so on. None of the outputs depend on one another, so
they can be computed in parallel. b) The inverse of the autoregressive flow is
computed using a similar method as for coupling flows. However, notice that to
compute he we must already know hi, to compute hs, we must already know hq
and ho, and so on. Consequently, the inverse cannot be computed in parallel.

Inverse Autoregressive Flows

e Inverting can be done in the reverse order of computation.
e But this means more elaborate (deeper) flows are slower to invert.

e If we just want sample probabilities,
o Build backwards so forward is slow and inverse is fast!
o Called an “inverse autoregressive flow”.

e Another approach is to train another network to learn the inverse.

o Less precise, but can be a lot faster.
o Easy to generate samples by known (picked) latent distribution.

Residual Flows

a) — —
h; f1[hs, ¢4] %\) > h)

s il @) pr—s;

—_/ =

=)

b) - y
1 fl[2)¢1] 1

h; |« \(ﬂm“(fa [hll’ ¢2] h/2

|

Figure 16.8 Residual flows. a) An invertible function is computed by splitting the
input into h; and h2 and creating two residual layers. In the first, hs is processed
and h; is added. In the second, the result is processed, and hs is added. b) In
the reverse mechanism the functions are computed in the opposite order, and the
addition operation becomes subtraction.

Contraction Mappings

a)

1.0

/
/
///
e
s
O/

N . e _

3 7
p /
3
3 [flzo). /
5 %

/
O
/
/
e
/
/"/
S

- / nZO Z1 iR2iZ3

. , o—0—-0———|

0.0 1.

Input, 2z

0

0.0

z + f[z]

0.0

Input

Figure 16.9 Contraction mappings. If a function has an absolute slope of less
than one everywhere, iterating the function converges to a fixed point fz] = z. a)
Starting at zo, we evaluate z1 = f[z0]. We then pass z1 back into the function and
iterate. Eventually, the process converges to the point where f[z] = z (i.e., where
the function crosses the dashed diagonal identity line). b) This can be used to
invert equations of the form y = z + f[z] for a value y* by noticing that the fixed

point of y*

— fl#] (where the orange line crosses the dashed identity line) is at
the same position as where y* = z + f[z].

Multiscale Flows
Z1 — X1
fy [% ¢1]
— L _> S — R
fale, o]
B - | f3 [.a ¢3] [| I |
f4 [.7 ¢4]
Z3 — > X3
Zy — P X4
Base density Model density

Figure 16.10 Multiscale flows. The latent space z must be the same size as the
model density in normalizing flows. However, it can be partitioned into several
components, which can be gradually introduced at different layers. This makes
both density estimation and sampling faster. For the inverse process, the black
arrows are reversed, and the last part of each block skips the remaining processing.
For example, f;'[e, ¢5] only operates on the first three blocks, and the fourth
block becomes z4 and is assessed against the base density.

Modeling Densities (only normalizing flows can do)

a) b) c)

Training samples iIResNet density Training samples IResNet density

Figure 16.11 Modeling densities. a) Toy 2D data samples. b) Modeled density
using iResNet. c—d) Second example. Adapted from Behrmann et al. (2019)

Synthesis (note artifacts)

Figure 16.12 Samples from GLOW trained on the CelebA HQ dataset (Karras
et al., 2018). The samples are of reasonable quality, although GANs and diffusion
models produce superior results. Adapted from Kingma & Dhariwal (2018).

Interpolation

Figure 16.13 Interpolation using GLOW model. The left and right images are real
people. The intermediate images were computed by projecting the real images to
the latent space, interpolating, and then projecting the interpolated points back
to image space. Adapted from Kingma & Dhariwal (2018).

Glow Notes

e Used progressive modeling of different resolutions.

o Some of the flow types we saw make this easy.
o Also added noise to avoid overfitting discrete pixel values.

e They were not confident about outliers.
o Sampled from square of probability distribution, so more concentrated in center.

e There is more than one model called GLOW.
o The one | thought of seeing this name has GAN quality.

Approximating Other Density Models (including VAE)

a) i Empirical data distribution b) Normalizing flow
~
R
3 —~
= aSa
| o, R
8, <
< Ay
%% 0.0 10.0 -10.0 0.0 10.0
z , x
C) - Normalizing flow plus samples d) Target distribution
~ Y
~
A
<
i\T e
0. B
| A g @
8
SN—
23
(oo .
-10.0 0.0 10. -10.0 0.0 10.0
xz T

Figure 16.14 Approximating density models. a) Training data. b) Usually, we
modify the flow model parameters to minimize the KL divergence from the train-
ing data to the flow model. This is equivalent to maximum likelihood fitting
(section 5.7). ¢) Alternatively, we can modify the flow parameters ¢ to minimize
the KL divergence from the flow samples x; = f[z;, @] to d) a target density.

Normalizing Flows - The Cost of Invertibility

Representational aspects of depth “For general invertible architectures, we prove

TLA . . . that invertibility comes at a cost in terms of
and conditioning in normalizing flows
depth: we show examples where a much deeper

Frederic Koehler? Viraj Mehtal Andrej Risteski? normalizing flow model may need to be used to
match the performance of a non-invertible

October 6, 2020 generator.”

Rest of the Semester

Diffusion Models (11/20)
Neural Fields (11/25)
Thanksgiving break (11/27)
Reinforcement learning (12/2)
Project presentations (12/4)
Project presentations (12/9)

Feedback?

