
Deep Learning for Data Science
DS 542

Lecture 22
Normalizing Flows

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Last Time

Unsupervised Learning

● Taxonomy
● Generative models
● Quantifying performance
● Variational autoencoders

This Time

Generative Models

● Normalizing Flows
○ Key design change is invertibility of each layer
○ Enables efficient probability computations

Do we have good models?

Didn’t Variational Autoencoders have Sample
Probabilities?
Yes, but can you solve this efficiently?

This can be approximated by sampling z but slow…

Latent variable models

Latent variable models map a random “latent” variable to create a new data
sample

6

Latent Variable Models

Informally speaking, different levels of latent variables…

● Latent variable directly determines observations
○ e.g. x = f(z)

● Latent variable determines distribution of observations
○ e.g.

● These levels aren’t really different -
○ An extremely tight distribution ~ a fixed prediction

○ A fixed prediction + noise ~ a distribution

Normalizing Flows

● Will start from a latent variable with a known distribution.
● Will map directly from latent variable to sample value.

○

● Key change: will be invertible.
○ This also means that and have the same dimension.

One Dimension - Mapping from Latent to Sample

One Dimension - Mapping from Latent to Sample

One Dimension - Easy Mode

Easier trick (not in the book)

● Use cumulative distribution functions!

● This is similar to the sampling method

One Dimension - Inverting

One Dimension - Inverting Easy Mode

If still one dimensional,

Then invert to get

One Dimension - Mapping Probabilities

Simple formula for sample probability density in terms of latent probability density
and derivative of mapping.

● If mapping changes quickly, probability is spread out more.
● If mapping changes slowly, probability is more concentrated.

One Dimension - Mapping Probabilities

Requirement for Computing Sample Probability

We need to know z!

● So f must be invertible.
● Easy to handle in 1D.

○ Just use cdf’s…
● Will be harder with more dimensions.

Aside: Terminology

● The forward mapping is often called the generative direction.

● The inverse mapping is often called the normalizing direction
since it maps the complicated distribution to the relatively simple
distribution… which we usually pick to be normal.

Why Normal Latents?

Why do we keep using normal distributions for latent variables?

● They are defined everywhere, so any value works.
● So they have gradients everywhere.
● But those gradients induce a bias towards more central latent values.
● And outliers are obvious.

● Variational autoencoders used these properties explicitly a couple times.
● Similar benefits here.

General Case (more than one dimension)

Still using but now using deep neural networks.

Sample probabilities are

● “Same formulas” but with bold for vector notation instead of scalars.
● In the sample probability formula,

○ Partial derivatives are the Jacobian matrix.
○ And the magnitude is the determinant of that Jacobian matrix.

Why Determinant?

● When I learned linear algebra,
○ det(A) = sum over column permutations of the product of the diagonal plus a power of -1…
○ That is pretty irrelevant now.

● More relevant identity
○ det(A) = product of eigenvalues

Determinants and relative density changes…

● Eigenvectors form an orthonormal basis.
● Looking at eigenvectors of the gradients, so they span the sample space.
● So the eigenvalues tell us about relative rates of gradient change.
● And the determinant tells about relative volume rates

between latent and sample space…

Forward and Inverse Mappings

General Case

Unwinding the layers of the neural network,

Again, the usual choice for Pr(z) is a normal distribution, leading to the name
“normalizing flows” for this inverting process.

General Case - Jacobian

The Jacobian can similarly be computed from individual layer Jacobians…

If any of them is zero, then the whole Jacobian is zero.

Also the case for invertibility.

Layer Wish List

● Expressiveness - can they combine to express an arbitrary density mapping?
● Invertibility - otherwise, not normalizing flows.
● Efficiency

○ Inverting each layer should be efficient.
○ Computing the determinant of the Jacobian should also be efficient (either direction works).

Invertible Network Layers

Two easy choices for invertible network layers or “flows”

● Linear flows
● Elementwise flows

Both are easy to invert, but not expressive enough.

● Will use these as building blocks.

Normalizing Flows - Linear Flows

Really just a linear layer without an activation function.

Cost of inverting grows with cube of dimension, so may parameterize it as an LU
decomposition to make inversion cheaper.

Linear functions applied to multivariate normal distributions give more multivariate
normal distributions.

Elementwise Flows

Idea: Apply an invertible nonlinear function to each element.

● Can use different functions for each element.
● Limitation is that different dimensions do not interact.

Elementwise Flows

Coupling Flows

Coupling Flows

● Half of vector is just copied.
● Other half can change.
● Use fixed permutation matrices to vary which can change each layer.

○ Permutation matrices tend to be hard to learn.

Autoregressive Flows

Inverse Autoregressive Flows

● Inverting can be done in the reverse order of computation.
● But this means more elaborate (deeper) flows are slower to invert.
● If we just want sample probabilities,

○ Build backwards so forward is slow and inverse is fast!
○ Called an “inverse autoregressive flow”.

● Another approach is to train another network to learn the inverse.
○ Less precise, but can be a lot faster.
○ Easy to generate samples by known (picked) latent distribution.

Residual Flows

Contraction Mappings

Multiscale Flows

Modeling Densities (only normalizing flows can do)

Synthesis (note artifacts)

Interpolation

Glow Notes

● Used progressive modeling of different resolutions.
○ Some of the flow types we saw make this easy.
○ Also added noise to avoid overfitting discrete pixel values.

● They were not confident about outliers.
○ Sampled from square of probability distribution, so more concentrated in center.

● There is more than one model called GLOW.
○ The one I thought of seeing this name has GAN quality.

Approximating Other Density Models (including VAE)

Normalizing Flows - The Cost of Invertibility

“For general invertible architectures, we prove
that invertibility comes at a cost in terms of
depth: we show examples where a much deeper
normalizing flow model may need to be used to
match the performance of a non-invertible
generator.”

Rest of the Semester

● Diffusion Models (11/20)
● Neural Fields (11/25)
● Thanksgiving break (11/27)
● Reinforcement learning (12/2)
● Project presentations (12/4)
● Project presentations (12/9)

Feedback?

